Date: 01-11-2018

B.Sc. DEGREE EXAMINATION - MATHEMATICS FIFTH SEMESTER - NOVEMBER 2018

MT 5508/MT 5502 - LINEAR ALGEBRA

Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

PART - A

ANSWER ALL THE QUESTIONS

($10 \times 2=20$)

1. Define dimension of a vector space.
2. Give an example for a vector space homomorphism.
3. Define basis for a vector space.
4. Prove that any $n+1$ vectors in F^{n} are linearly independent.
5. Let R^{3} be the inner product over R under standard inner product. Find the norm of $(3,0,4)$.
6. Define a dual space.
7. Let $T \in A(\mathrm{~V})$ and $\lambda \in F$. If λ is an eigen value of T, prove that $\lambda I-T$ is singular.
8. Show that $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal.
9. Define unitary linear transformation.
10. Define rank of a matrix.

PART - B

ANSWER ANY FIVE QUESTIONS

($5 \times 8=40$)
11. Let V be a vector space and suppose that one basis has n elements and another basis has m elements. Then prove that $m=n$.
12. Prove that the intersection of two sub-spaces of a vector space V is a subspace of V .
13. Express the vector $(1,-2,5)$ as a linear combination of the vectors $(1,1,1),(1,2,3)$ and $(2,-1,1)$ in R^{3}.
14. Prove that the vectors $(1,0,0),(1,1,0)$ and $(1,1,1)$ form a basis of R^{3}, where R is the field of real numbers.
15. State and prove Schwarz inequality.
16. If $S, T \in A(\mathrm{~V})$ then prove that (i) $\operatorname{rank}(\mathrm{ST}) \leq \operatorname{rank}$ of T (ii) $\operatorname{rank}(\mathrm{ST}) \leq \operatorname{rank}$ of S .
17. Show that any square matrix can be expressed as a sum of a symmetric matrix and a skew symmetric matrix.
18. Show that the system of equations $x_{1}+2 x_{2}+x_{3}=11,4 x_{1}+6 x_{2}+5 x_{3}=8$ and $2 x_{1}+2 x_{2}+3 x_{3}=19$ is inconsistent.

PART - C

ANSWER ANY TWO QUESTIONS

19. (a) If S and T are subsets of a vector space V over F , then prove that
(i) S is a subspace of V if and only if $L(S)=S$.
(ii) $S \subseteq T$ implies that $L(S) \subseteq L(T)$.
(iii) $L(L(S))=L(S)$.
(iv) $L(S \cup T)=L(S)+L(T)$.
(b) If V is a vector space of finite dimension and w is a subspace of V is a subspace of V , then prove that $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.
20. a) If U and V are vector spaces over F, and if T is a homomorphism of U onto V with kernel W, then prove that $U / W \cong V$.
b) Prove that $T \in A(V)$ is invertible if and only if whenever $v_{1}, v_{2}, \ldots . v_{n}$ are in V and linearly independent, then $T\left(v_{1}\right), T\left(v_{2}\right), \ldots . T\left(v_{n}\right)$ are also linearly independent.
21. Apply the Gram - Schmidt orthonormalization process to obtain an orthonormal basis for the subspace of R^{4} generated by the vectors $(1,1,0,1),(1,-2,0,0)$ and $(1,0,-1,2)$.
22. a) Prove that the linear transformation Ton V is unitary of and only if it takes an orthonormal basis of V onto an orthonormal basis of V .
b) Prove that for any $m \times n$ matrix over a field F , the row rank and column rank are equal.
